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The method of matched asymptotic expansions is used to study the generation of 
Tollmien-Schlichting waves by free-stream disturbances incident on a flat-plate 
boundary layer. Near the leading edge, the motion is governed by the unsteady 
boundary-layer equation, while farther downstream it is governed (to lowest order) 
by the Orr-Sommerfeld equation with slowly varying coefficients. It is shown that 
there is an overlap domain where the Tollmien-Schlichting wave solutions to the 
Orr-Sommerfeld equation and appropriate asymptotic solutions of the unsteady 
boundary-layer equation match, in the matched-asymptotic-expansion sense. The 
analysis explains how long-wavelength free-stream disturbances can generate 
Tollmien-Schlichting waves of much shorter wavelength. It also leads to a set of 
scaling laws for the asymptotic structure of the unsteady boundary layer. 

1. Introduction 
It is well known that laminar to turbulent transition in boundary layers is strongly 

influenced by unsteady disturbances in the free stream. This is often the result of a 
sequence of events that begins with the excitation of spatially growing Tollmien- 
Schlichting waves by the free-stream disturbances. When the free-stream disturbances 
are periodic in time and of sufficiently small amplitude, the Tollmien-Schlichting 
waves will also be periodic. 

This so-called receptivityt problem was discussed in a recent review article by 
Reshotko (1976). It differs from classical stability theory in that it leads to a 
boundary-value problem, while stability theory leads to an eigenvalue problem. Since 
the time-harmonic Tollmien-Schlichting waves are normal nodes of the Orr- 
Sommerfeld equation, which applies in the downstream region where the mean flow 
is nearly parallel, one can always add an arbitrary multiple of these waves to the 
solution of the boundary-value problem and still satisfy the boundary conditions and 
the governing equations unless an upstream boundary condition (i.e. an initial 
condition) is imposed at the start of the boundary layer. 1.e. the Tollmien-Schlichting 
waves only couple to the free-stream disturbance when an upstream boundary 
condition is imposed. 

However, this upstream boundary condition cannot be imposed on the solution 
to the Om-Sommerfeld equation itself. Near the leading edge of the boundary layer 
(actually within a region that occupies the first few wavelengths of the boundary 
layer) the divergence of the mean flow has a first-order effect on the unsteady motion 
rather than being a higher-order effect that can be treated as a ‘slowly varying’ 
correction to a parallel flow as in classical stability theory. In this region, inertia 
terms involving the cross-stream component of the mean-flow velocity have to be 
included in the lowest-order equation for the unsteady flow. However, one can 

t The term ‘receptivity’ was first introduced by Morkovin (1969). 
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neglect unsteady pressure fluctuations across the mean boundary layer, which 
is still relatively thin (on a wavelength scale). The flow is then governed by the 
unsteady boundary-layer equation rather than by an Orr-Sommerfeld equation 
with slowly varying coefficients. 

This latter equation, whose eigensolutions are the Tollmien-Schlichting waves, is 
only valid further downstream. The upstream boundary condition for its solutions 
should therefore be that they ‘match ’, in the ‘matched-asymptotic-expansion ’ sense (Cole 
1968) onto the appropriate solutions of the unsteady boundary-layer equation in some 
intermediate region that overlaps the unsteady boundary layer and Orr-Sommerfeld 
regions. 

In  order to reduce the problem to its simplest terms we restrict our attention to 
a two-dimensional incompressible time-stationary flow over an infinitely thin flat 
plate. The amplitude of the disturbance field is assumed to be small relative to the 
mean free-stream velocity U ,  and the equations are linearized about the mean flow. 
Then since the unsteady flow is assumed to be time-stationary, only a single harmonic 
component of the disturbance field, say of frequency o, need be considered. Even 
though we assume that the plate is infinitely thin, we ultimately show that our 
principal results apply to any flat plate whose ‘nose radius’ is of the order of the 
‘convective ’ wavelength U,/w of the disturbance. The finite-thickness flat plate 
could have been considered at the outset, but this would have complicated the 
presentation. Finally, the Reynolds number based on U,/o is assumed to be large. 

Our approach is to take the reciprocal of this Reynolds number, which we denote 
by e6, as a small parameter and obtain a uniformly valid asymptotic expansion in 
this parameter. We suppose that the streamwise wavenumber of the imposed 
disturbance (i.e. its inverse spatial scale) is O ( w / U , ) . i  Then allowing E + 0 while 
requiring that x = w x + / U ,  be order one, where x+ denotes the streamwise distance 
from the leading edge (see figure l ) ,  one obtains the unsteady boundary-layer 
equation to lowest order of approximation (Moore 1951 ; Lighthill 1954). 

This equation must be solved numerically, but one only needs to know the 
asymptotic expansion of its solution as x + m (i.e. far downstream) in order to show 
that it can be matched onto the Tollmien-Schlichting wave solution of the Orr- 
Sommerfeld equation. This asymptotic solution was studied by Lighthill (1954), Lam 
& Rott (1960) and Ackerberg & Phillips (1972). Their work shows that the solution 
develops a double-layer structure in this downstream region (actually this structure 
begins to  develop when x x 1 ; see figure 1).  The inner layer is a Stokes shear-wave 
type of flow to lowest order, and the outer flow is a modified Blasius motion. In  fact, 
this flow will be identical with a Stokes shear wave to lowest order (Ackerberg & 
Phillips 1972) whenever the free-stream velocity fluctuation is asymptotically 
independent of x as x + co. 

Lam & Rott (1960) point out that the Stokes-type solution is essentially ‘ incomplete ’ 
because it is uniquely determined independently of the upstream conditions that must 
always be imposed when solving a parabolic partial differential equation. The 
downstream unsteady boundary-layer solution therefore consists of the Stokes- 
layer-type solution supplemented by a set of asymptotic eigensolutions. 

Lam & Rott (1960) went on to construct a set of such asymptotic eigensolutions, 
which decay exponentially fast in x, with the lowest-order eigensolution exhibiting 
the most rapid decay. Ackerberg & Phillips (1972) used the method of matched 

t Note that this includes the zero-wavenumber disturbance corresponding to a uniform 
oscillation of the stream (or a plane acoustic wave in the incompressible limit). 



Tollmien-Schlichting waves near a leading edge 61 

asymptotic expansions to obtain expressions for these eigensolutions that are 
uniformly valid in 7 for 0 < 7 < 00, where 7 is the Blasius variable, i.e. it  is the 
cross-stream coordinate divided by the local thickness of the steady boundary layer. 
However, i t  turns out that these expressions are not quite correct as they stand. Thus 
it is shown in $3  below that they still satisfy the unsteady boundary-layer equations to 
the same degree of approximation when they are multiplied by x7 for any constant 7. 
But, it is also shown that there is only one value of the exponent 7 for which the 
next-order equations can be solved, and this solvability condition uniquely (i.e. to 
within a constant factor) determines the lowest-order asymptotic eigensolutions. 
Brown & Stewartson (1973) found an alternative set of asymptotic eigensolutions of 
the unsteady boundary-layer equation whose exponential decay rate increases with 
increasing order. 

The ‘asymptotic eigensolutions’ of Lam & Rott, which are proportional to 
exp ( - A , d ) ,  where A, is a complex constant, oscillate with a wavelength ( -  2-4) that 
decreases with increasing x while the mean boundary-layer thickness increases a t  the 
same rate. Thus the spatial scale of the unsteady motion must ultimately become 
comparable to the boundary-layer thickness, and the cross-stream pressure fluctua- 
tions, which are neglected in the unsteady boundary-layer approximation, must then 
become important. The Lam & Rott eigensolutions, which are based on this 
approximation, will then be invalid (i.e. they will not be asymptotic solutions to the 
full Navier-Stokes equations). 

We obtain new solutions, which apply further downstream than asymptotic 
eigensolutions of the unsteady boundary-layer equation, by using a generalization 
of the method of multiple scales (Nayfeh 1973, pp. 276-282) and considering the 
limiting form of the governing equation as E + 0 with x1 = e2x (rather than x) held 
fixed. This leads to solutions that apply when x = O ( E - ~ )  (see figure 1) .  They are 
essentially the classical large-Reynolds-number-small-wavenumber approximation 
to the Tollmien-Schlichting wave solutions of the Orr-Sommerfeld equation, appro- 
priately corrected for slow variation in boundary-layer thickness. Thus they decay 
exponentially fast in the downstream direction when x1 is relatively small, and at 
least one of them exhibits exponential growth when x1 is sufficiently large. One 
purpose of this paper is to show that there exists an overlap domain where these 
Tollmien-Schlichting waves match in the matched-asymptotic-expansion sense (Cole 
1968) onto the Lam & Rott (1960) asymptotic eigensolutions, and therefore that the 
Tollmien-Schlichting waves are the natural continuations of these eigensolutions into 
the downstream region. Another purpose is to show that the classical solutions of the 
Orr-Sommerfeld equation at the lower branch of the neutral stability curve can be 
used to fix its spatial modes upstream of this curve. 

The analysis explains how the long wavelength of the free-stream disturbance 
(assumed to be O( U , / w ) )  is progressively reduced by non-parallel flow effects until 
it matches the Tollmien-Schlichting wavelength. A physical interpretation is given 
in $6. The amplitude of each Tollmien-Schlichting wave is equal to e8 times a function 
whose order of magnitude is unity. Matching with the asymptotic eigensolutions 
allows us to determine the constant exponent s, i.e. to determine the dominant 
Reynolds-number scaling of the amplitude. The implications of this are discussed at 
the end of $6. 

The Stokes-type solution of the boundary-layer equation remains uniformly valid 
everywhere in the downstream region and is completely decoupled from the 
Tollmien-Schlichting waves. 

3.2 
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FIGURE 1 .  Asymptotic structure of unsteady boundary layer; E = (vo/uZ,)*. 

2. Formulation 
We consider a two-dimensional incompressible flow of density p and kinematic 

viscosity v over a semi-infinite flat plate as shown schematically in figure 1 .  Far 
upstream the motion consists of a uniform flow with velocity U ,  plus a small- 
amplitude harmonic perturbation of frequency w .  We suppose that the velocity 
v = {u, v} has been non-dimensionalized by U,. We also suppose that the time t has 
been non-dimensionalized by and that the Cartesian coordinates x = { x ,  y} have 
been non-dimensionalized by U , / w .  The plate is assumed to be located a t  y = 0, 
x > 0. 

In  the absence of viscosity the velocity a t  the surface of the plate would be of the 

(2.1) 
form 

u = 1 +u,(x)e-it, v = 0 ( x  > O ) ,  

where u,  is assumed to be much less than unity. With viscosity, the motion is 
governed by the two-dimensional momentum and continuity equations which can be 
written in terms of the dimensionaless vorticity -a and stream function Y as 

where a(n, Y ) / a ( x ,  y) 
denotes the Laplacian 

is the reciprocal of the 
components are given 

$2 = A Y ,  (2.3) 

denotes the Jacobian (an/&) ( d Y / d y )  - (aY/&) ( a n l a y ) ,  A 
(az /ax2)  + (az/ay2), and 

€6 E vw/U$ (2.4) 

characteristic Reynolds number of the problem. The velocity 

so that on the surface of the plate 

au, 
a Y  

Y = - = 0 ,  y = o  ( x > O ) .  
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Our interest here is in the case where 
€4 1, 

x-1 = O(1) .  

Then x /e6 ,  the Reynolds number based on the distance from the leading edge, will 
be large? and the viscous effects will be confined to a thin boundary layer a t  the 
surface of the plate. Hence the boundary condition a t  infinity is that  Y match 
smoothly on to the inviscid solution a t  large values of y/e3. I n  fact in the 
absence of the perturbation u, the steady flow is given by the extended Blasius series 
(Goldstein 1960, p. 142) 

YBl = c32/2 t ( F ( 7 )  + O ( E ~ ~ - ~  In ((E-~))}.  

2 = x+iy  = x 2 ,  

(2.9) 

(2.10) 

Here (5, 7)  are parabolic coordinates defined in the usual way by 

and F is the Blasius function, which is a solution of 

F + F F  = 0, 

F(0)  = F'(0) = 0, 

(2.1 1 )  

(2.12) 

(2.13) 

F'(7) --+ 1 +exponentially small terms as 7 -+ 00, (2.14) 

where the prime denotes differentiation with respect to 7.  Even though w appears 
in the non-dimensionalization of (2.2) and (2.3) it  is clear that  it does not appear in 
the Blasius solution (2.9). 

Since we are interested in small-amplitude motion, it is natural to linearize the 
solution about the Blasius solution (2.9). We only retain the linear terms in this 
amplitude expansion, but i t  will be necessary to consider higher-order terms in the 
expansion in c.  However, these will all be of lower order than e 6 ( q 2 / t 2 ) .  It then follows 
from (2.9) that  we can approximate the steady solution by the Blasius solution 
2/2e3@'(7) and seek a solution of the form 

Y = e3[2 /2  t F ( 7 )  + $(t2, 7)  ePit + . . .I, (2.15) 

where l$l 4 I5F(T)I. 

Moreover, (2.10) and (2.11) imply that 

x = 41+0($g)]; 

4lXl2 = 4 5 ' [ 1 + 0 ( 3 ] .  

(2.16) 

(2.17) 

and that, to within this approximation, 

= ye-3/(2~)k (2.18) 

7 We are excluding a relatively small region near the leading edge, but we shall see that this 
need not concern us here. 
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Substituting (2.10), (2.11) and (2.15) into (2.2) and (2.3), subtracting out (2.12), 
and neglecting quadratic terms in 4,  we obtain upon using the approximation (2.17) 
to eliminate I d z / d ~ I  and the approximation (2.16) to reinsert the variable x in place 

where 
(2.20) 

This equation is sufficiently accurate to serve as a starting point for the present 
analysis. It must be solved subject to the boundary conditions 

4 = - = 0  a4 ( 7 = 0 ,  x > 0 ) ,  
87 

since (2.18) shows that 7 = 0 on the surface of the plate. The solution to (2.19) must 
match on to the inviscid solution for large 7. 

3. Unsteady boundary-layer region 
We first consider the limit e + O  with x = O(1). With the present non- 

dimensionalization, this corresponds to letting the disturbance Reynolds number 
become infinite while keeping the streamwise distance at about a wavelength U,/w 
from the leading edge. Then, in view of(2.8), 

This equation can be integrated with respect to 7 to obtain the linearized unsteady 
boundary-layer equation 

(3.2) 

where h(x) is determined by the free-stream pressure distribution. I n  fact, since this 
equation must be solved subject to  the free-stream boundary condition (see (2.1), 
(2.5) and (2.15)). 

as 7 --+ co, (3.3) u1 = e3$,y = (2x14 +o, -, u,(x) +exponentially small terms 

i t  follows from (2.14) that  
(3.4) 

On the surface of the plate ?+b0 satisfies 

40 = 40, = 0 (7 = 0). (3.5) 

Equation (3.2), being the boundary-layer approximation to the Navier-Stokes 
equation, neglects pressure variations across the layer but accounts for the 
divergence or non-parallelism of the mean flow in that it retains inertia terms, like 
V ( a z 4 / a y 2 ) ,  where V is the mean cross-stream velocity. 
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As we indicated in $1 ,  our interest is in showing that certain asymptotic 
solutions to this equation, which applies when x = 0(1), can match in the 
‘matched-asymptotic-expansion ’ sense (Cole 1968) onto the Tollmien-Schlichting 
wave solutions of the Orr-Sommerfeld equation as x becomes large. 

We consider only the asymptotic eigensolutions of Lam & Rott (1960). Their work 
precedes the use of matched asymptotic expansions, but Ackerberg & Phillips 
rederived their results using this approach. We refer mainly to this more modern 
work,? which clearly shows that the asymptotic eigensolutions provide asymptotic 
solutions to the unsteady boundary-layer equation which are uniformly valid in T,I 
for 0 < 11 < 00 and exhibit a two-layer structure with adjustment to the wall 
boundary conditions taking place across a thin inner layer of the same thickness as 
the Stokes layer. 

In fact, in the present notation, their formula for the asymptotic eigenfunctions 
becomes: 

where C is an arbitrary constant, and 

i U; 
(,+(2x):F‘(q)+O(x-j) in the main boundary layer, 7 = 0(1 ) ,  (3.7a) 

go = U; s,” (a-a) w(t)ddd 1 s,” w ( d ) d d  
+O(xd) for T,I = O(x-1). 

F’ is defined by (2.12)-(2.14),$ 

(3.7b) 

U; F(0) = 0.4696.. . ; (3.8) 

h = e+/&, (3.9) 

(3.10) 

(3.11) 

(3.12) 

and I& denotes the nth root of 

Ai’(cn)=O ( n = 1 , 2 , 3  , . . .  ). (3.13) 

Here Ai and Ai’ denote the Airy function and its derivative in the usual notation 
(Abramowitz & Stegun 1964, pp. 446, 448). Since the roots of (3.13) all lie along the 
negative real axis, we can put 

= pnePin with pn > 0. (3.14) 

It is easy to see that (3.6) oscillates with increasing rapidity (i.e. the wavelength of 
the oscillation decreases like x-:) as x + co. 

Ackerberg & Phillips (1972) show that this result is a homogeneous solution of the 

t The Ackerberg & Phillips analysis was restricted to the case of constant urn, but the asymptotic 
eigensolutions do not depend on u, and therefore remain unchanged in the more general case 
considered herein. Of course the arbitrary constants that multiply these eigensolutions will be 
strongly dependent on the precise nature of u,(z). 

$ It is important to note that Ackerberg & Phillips use an ect time dependence while we use e-ft, 
so our results are essentially the complex conjugates of theirs. 

f Note that we set / = +in rather than -in as was done by Ackerberg & Phillips. 
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unsteady boundary-layer equation (3.2)11 to  within an  error that  is smaller than (3.6) 
by a factor O(x2). However, as shown in appendix A, $c = xT$Ap also provides a 
solution with this property for any constant 7 .  The exponent T is determined by the 
higher -order terms. 

One way to  find this quantity is to begin with an expansion of the form 

A(2x)i kc = x’(g0 + x-%gl + . . .) as X + O ,  (3.15) 

where go is given by (3.71, and show that there is only one value of T that  leads to 
an equation for g1 that possesses a solution (Nayfeh 1973, pp. 276-282). This 
procedure is carried out in appendix A, where i t  is shown that T is given by 

[a2gl - 2ag; + fAa3((t~gh -go)] W’ d a  

7 =  - s,“ > (3.16) 
4 s,“ (4 - 90) w’ d a  

and go and w are given by (3.7b) and (3.10) respectively. 

4. The Orr-Sommerfeld region 

wavelength is decreasing like x-4. Then the cross-stream velocity perturbation 
Since arg A = -in, (3.15) represents a ‘downstream-travelling ’ disturbance whose 

will eventually become large relative to the streamwise velocity perturbation 

This produces a significant cross-section pressure fluctuation through the transverse 
momentum equation, and the unsteady boundary-layer equation (3.2), from which 
(3.15) is derived, becomes invalid. I n  fact, substituting (3.15) in A$, where is defined 
by (2.20), shows that the second term in the resulting expression will eventually be 
proportional to ( ~ A x ~ ~ / U ; ) ~ ,  and therefore when x = O ( C ~ )  it  will certainly not be 
negligible compared with the first term, as was assumed in deriving the unsteady 
boundary-layer equation (3.2). However, it turns out that  (3.15) breaks down a t  even 
smaller values of x. This occurs because du,/ay = e3a2$/dy2 is small in the outer 
portion of the boundary layer and dv,/ax = - 2 az$/axz therefore becomes significant 
at smaller values of x there. 

We therefore seek a solution to (2.19) that  is valid in the region where 

x1 = 6 X  (0 < r < 3) (4.3) 
remains of order unity as e + O  and which extends the asymptotic unsteady 
boundary-layer solution (3.15) into this region, that  is, which matches the latter 
solution asymptotically as 2, -+ 0. 

The character of (3.15) suggests that  this solution will be of the form 

(4.4) 

where K and C: are O( 1 ), b = +r, (4.5) 

and the constant s will be determined by the analysis. 
11 Our dependent variable differs from that  of Ackerberg & Phillips by a factor of xi. 
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Substituting (4.4) into (2.19), we obtain 

K 

1 
U(3aaxIG+2a2Gx1)-c(aa,lG+2a2Gx1)+ U“Gx, 

uniformly in 7. (4.6) 

Here D = a/aq, the primes denote total derivatives with respect to 7, the subscript 
x 1  denotes partial or total derivatives with respect to x l ,  

& 
c = c ( x l )  = - 

K ( X l ) >  
9 denotes the Orr-Sommerfeld operator 

(4.9) 

LZ’ (D2-~2)2-iaR[(U-~)(D2-a2)- U”], (4.10) 

and, as can be seen from (2.5), (2.15), (2.16) and (2.18), 

u = U(7)  = F’(7) (4.11) 

is the mean-flow velocity in the direction along the plate. 
The statement a t  the end of (4.6) is intended to imply that we have retained 

sufficient terms to ensure that the approximation will be valid for all 7, even in local 
regions where the terms involving higher derivatives with respect to 7 can become 
large and in regions where U and/or its derivatives become small (i.e. near the wall 
and a t  the outer edge of the Blasius boundary layer). Notice, for example, that, even 
though the effective Reynolds number R will always be large and a and/or c will 
always be small, we have included terms involving these quantities on the left-hand 
side of (4.6), which presumably contains only the lowest-order terms. 

The left side of (4.6) is then, just the Orr-Sommerfeld equation with coefficients 
a, c and R that are slowly varying functions of x, that is, they are functions of the 
‘slow variable’ xl. However, a, c and R are not all independent but, as can be seen 
from (4.7)-(4.9), are related to each other and to x1 by 

ac = ( Z X , ) ~ C ~ - ~ ~  = 8 R .  (4.12) 

Of course a and c correspond respectively to the wavenumber and wave speed in 
(4.10). 

Since (4.6) has slowly varying coefficients, it  is appropriate (Saric & Nayfeh 1975) 

(4.13) to put 

where A is a ‘ slowly varying ’ function of x1 to be determined by the analysis. Then 

G = A(xAy(7,  X I ) >  

+ H.) + O ( P r ) ,  
K 

1 
a R  

(4.6) becomes 
(4.14) 

Hl  = [a2(3U-2c)  + U”]y- UD2y,  (4.15) 

H ,  = a a x I ( 3 U - c ) y + [ U ” + a 2 ( 3 U - 2 c ) -  U D 2 ] y z , + -  “ Dz(FDy)-$  D(F2y) 1 . 
2x1 

(4.16) 
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It follows from (3.5), (4.4) and (4.13) that  we must require 

y = D y = O  a t  7 = 0  (4.17) 

and it  is appropriate to  require that 

Dy --t O (exponentially) as 7 -+ CO. (4.18) 

Since the effective Reynolds number R is always large in the present approximation, 
it is only appropriate to  consider the asymptotic (as R -+ 00)  solution to (4.14). 
Fortunately, the asymptotic theory of the Orr-Sommerfeld equation has been highly 
developed by Tollmien (1929, 1947), Lin (1945, 1955) and many others. 

As we indicated in $ 1 ,  our interest is in showing that (4.14) has an eigensolution 
(i.e. a solution satisfying the homogeneous boundary conditions (4.17) and (4.18)) that  
matches the damped asymptotic eigensolution (3.15) when x1 is small and develops 
into a growing (i.e. unstable) wave when x1 = O(1). 

Now i t  can be seen from (3.15), (4.4) and (4.8) that  matching with (3.15) can only 
occur if a N x1e3--' as x1 -+ 0, which, in view of (4.3), implies that  a must be small 
in this limit. But i t  is also known (Reid 1965, p. 306; Lin 1946) that  01 is small 
in the vicinity of the neutral stability curve when R is large. Hence it is appropriate 
to restrict our attention to  the case where a is small. 

However, it  can be seen from (4.10) and (4.14) that  R actually appears in the 
combination aR in the Orr-Sommerfeld equation, and the asymptotic theory for large 
R and small a must really be an asymptotic theory for large aR and small a. But 
it follows from (4.7) and (4.8) that  

aR = 22,K(Z1, E ) / &  (4.19) 

will certainly be large in the present case. 
It remains to choose the scaling exponent r .  As we have already indicated, we would 

like to do this so that x1 will be of order unity in the vicinity of the lower branch 
of the neutral-stability curve. The asymptotic theory of the Orr-Sommerfeld 
equation for large aR and small a (Reid 1965, pp. 279-281 ; Lin 1946) shows that 
a = O(c) in this region. Hence it follows from (4.8) and (4.9) that  we must put 

r = 2. (4.20) 

Then a = eOI, c = eF, (4.21) 

where a = ( 2 X l ) d  K (4.22) 

and C = KP1 (4.23) 
are O(1).  

It is important to notice that, even though K and consequently OI and c are 0(1), 
K does depend on E and therefore possesses an asymptotic expansion in this parameter. 
However, it is clear from (4.3)-(4.5) and (4.20) that  this expansion need only be 
carried out up to, but not including, terms O(e4), since (see (4.3), (4.5) and (4.20)) the 
latter can always be incorporated into the 'slowly varying' function A(xl), which 
enters (4.4) via (4.13). Thus, in the present approach, the slowly varying amplitude 
function, which is usually introduced to  account for non-parallel-flow effects (Gaster 
1974; Saric & Nayfeh 1975), is merely the natural continuation of the asymptotic 
expansion of K .  

Since a and c are both small, classical theory (Lin 1946) suggests that  the solution 
will exhibit a three-layer structure in the 7-direction. There will be (i) a viscous wall 
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layer that  contains the critical layer, (ii) a main inviscid layer where the flow is 
quasi-steady and nearly parallel, since a and c appear only in the higher-order terms 
there, and (iii) an outer inviscid region where unsteady effects and streamwise 
variations are important since a enters the lowest-order solution in this region. 

Smith (1979) recognized that the Tollmien-Schlichting waves exhibit this 
triple-layer structure on the lower branch of the neutral-stability curve and showed 
that this structure is, in fact, the same as the ‘triple-deck’ structure of Stewartson 
(1969) and Messiter (1970) there. In Smith’s analysis, the solution is expanded in 
terms of the usual triple-deck parameter e* = (v/U,x+)i, which, as is easily seen 
from (2.4), (4.3) and (4.20), is related to our small parameter E by e = e*x!. Hence both 
parameters are of the same order in the outer region where x1 = O(1) and we should 
be able to obtain the solution to the present problem by using a procedure close to 
the one used by Smith (1979). But, since Smith’s parameter depends on x while 
ours does not, we do not have to expand the frequency in powers of E as was done 
by Smith. Our procedure turns out to be intermediate between that used by Smith, 
and that of classical Tollmien-Schlichting theory. We therefore omit the details and 
only outline the major steps. We first consider the inviscid layers. 

4.1. The inviscid region 

The solution in the main inviscid layer corresponds to the limit E --+ 0 with 7 = O(1). 
We therefore seek an expansion of the form 

Y = Yo(7, 4 +ey1(71,x1) + O(E2). (4.24) 

Since K ,  and consequently ~l and C, depend on E ,  the conventional approach would 
be to also expand these quantities in E (Nayfeh 1973, pp. 68-71), but it turns out 
to be simpler to leave them unexpanded and determine their €-dependence a t  the 
end of the analysis. This introduces extraneous higher-order terms into the expan- 
sions, but of course no additional error is incurred by retaining such terms. They 
can be eliminated at any stage of the analysis by re-expanding the solution - if this 
turns out to be desirable. Terms such as yo and y1 will then depend on e as well as 
the indicated arguments but we simplify the notation by suppressing this dependence. 
Another reason for leaving ~l and c unexpanded is to keep the analysis as close as 
possible to classical stability theory. 

Matching with the wall-layer solution requires that the lowest-order normal 
velocity component of the outer solution vanish at the wall - so we must take 

Y O ( O , ~ , )  = 0. (4.25) 

The solution in the outer inviscid region corresponds to the limit a + O  with 
f = O(1), where q= €7. (4.26) 

In this region the expansion must be of the form 

y = TO(K 2 1 )  +eT1(% 5 1 )  + O(E2). (4.27) 

When the condition (4.25) is imposed, the first two terms of these two expansions 
can be determined independently of the solution in the wall layer. Since the procedure 
is standard and is in fact the same as that used by Smith (1979), we only give the 
result, which in the main inviscid layer is 

(4.28) 
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The analysis can easily be continued to determine the higher-order terms, which 
up to, but not including, those of O(e5) are found to  satisfy Rayleigh's equation with 
CL = €2 and c = eF both small. A number of investigators obtained uniformly valid 
asymptotic solutions to this equation for the limit a G ea --* 0. One such solution that 
satisfies the appropriate outer boundary condition is given by Reid (1965, p. 279). 
The solution to the present problem is easily obtained by re-expanding his result for 
small values of c = €5 (see Goldstein 1982). 

4.2. The viscous wall layer and the characteristic equation 

The solution in the viscous wall layer corresponds to  the limit E -+ 0, = O( l ) ,  where 

7 = q / e .  (4.29) 

We therefore seek an expansion of the form 

Y = e b ( ~ ~ , ~ ) 7 o ( i i , ~ 1 ) + ~ ~ i j i 4 ( i i , x 1 ) + .  .., (4.30) 

where b(x,, 6) = 1 + eb1(zl) + E ~ ~ , ( X , )  + e3(ln e) b3(x,). 

Equation (4.19) and (4.20) show that 
- 
/3 e(olR)b = (2x,~)4 (4.31) 

is of order unity. Inserting (4.20), (4.21) and (4.29)-(4.31) into (4.14)-(4.16), using 
(4.11) and (A 5), and equating coefficients of like powers of 6 yields 

s w 7 0  = 0, (4.32) 

where the operator gW is defined by 

and the functions and B2 are defined by 

HI E D(y,-qDy,),  IT2 = DJT, 
where 

The boundary condition (4.17) implies that  

yo = Dy0 = O at 9 = 0, 

y4 = Dy4 = 0 a t  7 = 0. 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

Equation (4.32) was used by Lin (1945) to describe the Tollmien-Schlichting waves 
in the neighbourhood of the critical layer. I ts  solution is well known. In  fact 
introducing the new independent variable 

(4.39) 

where (4.40) 



Tollmien-Schlichting waves near a leading edge 71 

into this result shows that d 2 y o / d p  satisfies Airy's equation 

(4.41) 

The resulting solution for To is given in appendix B. 
The inner expansion (4.30) must now be matched onto the solution in the main 

inviscid region. This will ultimately determine the expansion of K in terms of E that 
was alluded to above. 

Since the procedure is again similar to that used by Smith (1979), and is roughly 
equivalent to  the now classical procedure of Lin (1945, 1946), we give only the final 
result. The analysis shows that the inner and outer expansions will match to within 
terms of O(e4 In E )  if we put (for details see Goldstein 1982) 

(4.42) 
where 

Jm, Jm, 
F+(Co) 

c o  Jr, Ai (6) d6 

is the Tietjens function, and J,, J2 ,  J3 are constants defined by 

(4.43) 

(4.44) 

(4.45) 

Not surprisingly, this is precisely the characteristic equation that is obtained from 
the classical large-aR small-a asymptotic solution to the Orr-Sommerfeld equation 
with the irrelevant higher-order terms in c neglected (Lin 1946, p. 294 of appendix 
and equation immediately following (12.5) ;t Reid 1965, pp. 279-282). It applies when 
c = O(a).  I ts  solutions are the eigenvalues of the Orr-Sommerfeld equation 
associated with the Tollmien-Schlichting instability waves. 

The neutral-stability curve, which divides the region of growing instability waves 
from the region of decaying waves, corresponds to real values of a and c .  The solution 
to (4.42) corresponding to the lower branch of this curve is given to  lowest order in 
a andc (i.e. to lowest order in E )  by (Lin 1946, equation (12.7) ; Reid 1965, pp. 281-282) : 

c z 2*296a/Uh, (4.46) 

R x 1-002(u;)5/a4. (4.47) 

The first of these shows that, as was anticipated, a is indeed of order c in the vicinity 
of this curve, while the second shows that aR is large there. 

The difference between the present result and that of conventional stability theory 
is that  a, c and R are no longer independent, but are related to each other and to 

t There are some minor typographical errors in equation (7) of Lin's appendix and a prime is 
missing in his equation (12.5). 
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x1 by (4.7)-(4.9) with r = 2 (see also (4.12)). Then since. only K and x1 appear in the 
actual solution (4.4), it  will be helpful to eliminate a, c and R and express the 
characteristic equation (4.42) entirely in terms of K and x l .  To this end we integrate 
by parts to obtain 

Ai(c)dc= 5s' Ai(5)dC-J' <Ai(C)dC. (4.48) Jl1 dc t1 001 @ I  

Hence it follows from (4.41) that (4.43) can be written as 

(4.49) 

J 001 

On the other hand, i t  follows from (4.23) and (4.31) that  (4.40) can be written as 

where 

(4.50) 

(4.51) 

Inserting (4.22), (4.23), (4.49) and (4.50) into (4.42) yields 

These equations determine the exponent K in the solution (4.4) as a function of the 
'slow variable' x1 and the small parameter E .  They are accurate to within an error 
O(s4), but, as we have already indicated, there is no need to determine K with any 
greater precision because the higher-order effects can now be accounted for by the 
slowly varying amplitude function A ( x l ) .  The latter is easily obtained by extending 
the analysis to  include the O(s5) terms in the outer expansion and the O(e4) terms 
in the inner, but we choose to  terminate the expansion a t  the present order. 

5. Matching of asymptotic eigensolution and Tollmien-Schlichting wave 
We must now show that as x1 = E ~ X  -+ 0, the downstream solution (4.4), which 

applies when x1 = 0(1), matches the asymptotic eigensolution (3.15), of the unsteady 
boundary-layer equation, which applies in the region where x = O(1). To this end, 
we first show that the exponential term in (4.4) matches the exponential term in 
(3.15). The function y ,  which enters through (4.13), will then be shown to match gox-i. 
Then the Tollmien-Schlichting wave (4.4) will completely match the asymptotic 
eigensolution (3.15) if A(xl) - xi+$ as x1 + 0 provided that we set the exponent s 
equal to - ( 2 ~ +  1) .  This last step is straightforward, but rather involved, and we do 
not give the details here. The interested reader is referred to  Goldstein (1982). 

5.1. Matching of exponential terms 

As we have already indicated, (4.50) and (4.52), which are only accurate to O(e4), 
contain irrelevant higher-order terms owing to their implicit dependence on 8 through 
K .  We can eliminate these terms by expanding K in an  appropriate asymptotic series 
in s and then re-expanding the result. 
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Since H is an analytic function of co, i t  is clear that  K must have an expansion of' 
the form 

K = KO + e K l  + EzK2 + e3(in e )  K3 + 0(€3). 

Inserting this into (4.50) and (4.51), expanding H in a Taylor series about 

and equating coefficients of like orders of E ,  we obtain 

H(e00) = 4, 

where H(coo) is defined by (4.52) and (5.2) and the primes on H denote derivatives 
with respect to coo. 

Since Ai (5 )  dc 
J m* 

cannot become infinite as 9, + 0, i t  follows from (4.52) and (5 .3)  that  either (i) coo + 0 
or (ii) that  Ai' (coo) + 0 in this limit. But, expanding (5.2) and (5 .3)  for small 9, and 
coo shows that condition (i)  can only occur if arg K~ = ini, which corresponds to an 
upstream-propagating wave, or if arg K~ has increased by more than a factor of 2n 
from its value a t  the neutral curve, where (4.46) and (4.47) hold. I n  the latter case, 
the eigensolution would have to exhibit growth upstream of the neutral curve - which 
certainly cannot occur. Hence we must conclude that 

Ai'(coo) + O  as Z1 + O .  (5.7) 

It therefore follows that 6 0  + en (5.8) 

for some n = 1, 2, . . . , where 5, is determined by (3.13), which can be thought of as 
the characteristic equation for the asymptotic eigensolution (3.15). Thus the limiting 
form of the characteristic equation for the Orr-Sommerfeld equation coincides with 
the characteristic equation for the asymptotic eigensolutions. 

Equation (5 .3)  has been solved numerically. The results are shown in figure 2. 
On the lower branch of the neutral-stability curve the solution to (4.42) is given 

by (4.46) and (4.47) to lowest order of approximation in a = and c = ec. These 
equations must therefore determine the neutrally stable solutions of (5.2) and (5.3) 
(i.e. the solutions corresponding to real K ~ )  when a, c and R are expressed in terms 
of K~ and Z1. 

Substituting (4.46) and (4.47) into (4.12) and (4.40), using (5.1), and noting that 
co = coO+O(e) ,  we find that 

coo = (2-296)(1-002)4 exp (-gni) and Z1 = ~ x , / ( U ; ) ~  = (2.296)9 (1.002)% x 3.033 

on the lower branch of the neutral-stability curve. Figure 2 shows that the curves 
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FIGURE 2. Variation of complex eigenvalue coo with non-dimensional distance zl. 

pass through this point. It also shows that coo approaches - 1.0188 as 9, + 0. As can 
be seen from the table on p. 478 of Abramowitz & Stegun (1964), this is the smallest 
root of (3.13), i.e. i t  is equal to  cl. This provides a numerical verification of our 
conclusion that (3.13) is the appropriate limiting form of the characteristic equation 
(5.3). 

It now follows from (3.9), (4.3), (4.20), (4.51), (5.8) and (5.2) that  

K, + i(2xl)4h/UA = ie(~x)?A/U; as x1 + 0, 15.9) 

where A is given by (3.9). Or more precisely, K, = i~ ( 2 x ) ~ h / U ~ + 3 C O x ~ + o ( x ~ )  as 
x1 + 0, where C, is an 0(1) constant. On the other hand, i t  follows from (4.41), the 
right-hand side of (4.52), (5.7) and table 10.13 on p. 478 of Abramowitz & Stegun 
(1964) that  both H’(coo) and H’(~oo) /H”( f ; ,o )  are non-zero constants when 9, = 0. 
Hence (5.4)-(5.6), (4.51) and (5.9) imply that 

K1 + &c1 Xf , K2 + 2c2 XI,  K3 + 3c3 X; (5.10) 

as x1 + 0, where C,, C2 and C3 are O(1) constants. We therefore conclude from (4.3), 
(4.20), (5.1) and (5.9) that 

- h(2X)t 
= exp [ 3uh (5.11) 

when E + 0 and x = O(1).  
It now follows from (4.5) and (4.20) that  the exponential term in (4.4) does indeed 

match the exponential term in the asymptotic eigensolution (3.15). 
Equations (4.50) and (4.52) were solved numerically to determine K as a function 

of 2,. The results, which are plotted in figure 3, show that Im K is zero when xl is on 
the neutral-stability curve. The dashed curve is a plot of the real and imaginary parts 
of the right-hand side of (5.9) with h given by (3.9) for n = 1 .  (Note that 
Re ih = Im ih = 06876 in this case.) The E = 0 curves represent K,, the lowest-order 
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edge. 

approximation to K .  Thus, the figure shows that (5.9) holds for the lowest-order 
eigenvalue and that K + K~ as x1 + 0 with E > 0. 

5.2. Matching of amplitudes 

We first consider the main inviscid region where 11 = O(1).  Inserting (4.23), (5.1), (5.9) 
and (5.10) into (4.28) shows that 

i i7; 
h (2x)4 

y+U+- +O(e3)  as x1 + O .  
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Comparing this with the first line of (3.7) and using (4.11) shows that 

y+g0/(2x): as x, 4 0  with r j  = O(1) .  (5.12) 

Hence the amplitudes match to within a power of x, which can be accounted for when 
A and xz are matched. 

We now consider the solution in the wall layer where = rj/e = O(1) and 

It follows from (4.23), (4.50), (5.1), (5.2) and (5.8)-(5.10) that  
y = Eyo+O(€Z). 

C +  Uh/(ieA(2x)i), co + cn as x1 4 0. (5.13) 

Inserting these into (4.39) we find that 6 + Cb as x1 + 0 where c,, is defined in (3.11) 
with cr given by (3.12). Inserting this together with (5.13) into (B l ) ,  introducing cr 
as a new variable of integration, and comparing the result with (3.7b) shows that 
(5.12) also holds in the inner viscous layer where ?j = O(1). 

6. Discussion of results 
The remnant of the unsteady boundary-layer solution oscillates about a Stokes- 

shear-layer type of solution with progressively decreasing amplitude. Mathematically, 
these oscillations are represented by asymptotic eigensolutions. I n  this paper, we 
consider only the asymptotic eigensolutions of Lam & Rott (1960), whose wavelength 
decreases with increasing distance downstream (it decreases like x-1). This reduction 
in spatial scale gives rise to cross-stream inertia effects, which are absent in the 
unsteady boundary-layer region and which can eventually (i.e. when x = 0(c2 ) )  
destabilize the flow - causing i t  to behave like a spatially growing Tollmien- 
Schlichting wave. 

The reduction in wavelength (and consequently in phase speed) allows free-stream 
disturbances to couple with Tollmien-Schlichting waves even when the wavelength 
of the former is very much larger than that of the latter. The reduction occurs because 
the asymptotic eigensolutions satisfy a homogeneous equation, which does not 
contain a free-stream pressure term to balance the temporal acceleration term. Since 
the latter term cannot be entirely balanced by viscous effects it must, in the main, 
be balanced by the convective acceleration term. 

The temporal and convective acceleration terms would balance exactly if the phase 
@ of the disturbance were t - dx/ U. 

Near the wall, U cc r j  cc y/xi, so that @- t K xj. Thus the wavelength of this 
disturbance decreases like 2-4. 

The wavelength of the asymptotic eigensolution (3.6) decreases like x-? for a similar 
reason, i.e. because i t  must penetrate into a region of decreasing mean velocity while 
producing no pressure fluctuations. 

The Lam & Rott asymptotic eigensolutions match onto Tollmien-Schlichting 
waves far downstream in the flow. The characteristic equation (4.55), which 
determines the eigenvalues of these waves, has one root for each of the asymptotic 
eigensolutions of the unsteady boundary-layer equation. Only the lowest-order asym- 
ptotic eigensolution of the unsteady boundary-layer equation turns into a spatially growing 
Tollmien-Schlichting wave. The remaining eigensolutions match onto Tollmien- 
Schlichting waves that continue to decay. 

Figure 3 shows that the imaginary part of the wavenumber K of the former 
Tollmien-Schlichting wave decreases very rapidly with increasing downstream 
distance when 3, = 2x,/Uh2 > 0 3 .  I n  this way, the lowest-order asymptotic eigen- 
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FIGURE 4. Variation of damping factor with streamwise distance. 

solution, which is at first quite highly damped, eventually turns into a growing 
disturbance. 

The figure also shows that the real part of the wavenumber (i.e. the reciprocal 
wavelength) at first increases with xl, reaches a maximum when P l  = 2x1/( Ui)z  is near 
unity, ahd remains relatively constant thereafter. Thus, the initial wavelength 
reduction, which occurs because of the absence of pressure fluctuations, ultimately 
produces the pressure fluctuations needed to keep the wavelength relatively constant. 
One might say that a quasi-equilibrium condit)ion is reached when x1 is O(1). Our 
numerical solution of (5.2) and (5.3) shows that ~ ~ / ( 2 x ~ ) i  is relatively independent 
of x1 for the Tollmien-Schlichting waves corresponding to the remaining asymptotic 
eigensolutions. 

The real part of the exponent in (4.4) is a measure of the amount of damping the 
Tollmien-Schlichting wave undergoes. This quantity multiplied by - E ~  is, to  the 
lowest order of approximation, equal to  I m j t ~ ( x ~ ) d x ~ ,  which is plotted in figure 4 
as a function of the normalized distance Z1 = 2x1/( Ui)2. It attains its maximum value 
a t  the neutral-stability point, which occurs a t  Zl x 3.03 when E = 0. Beyond this point 
it begins to decrease until i t  becomes negative, which indicates that  the instability 
wave has grown beyond its initial upstream value. The maximum damping is roughly 
equal to  -3-62 when the characteristic Reynolds number c6 is lo4. 

It follows from (3.3), (4.4), (4.5), (4.131, (4.20) and the remarks at the end of the 
first paragraph of $5 that  the streamwise velocity fluctuation associated with the 
Tollmien-Schlichting wave is given by 

where 7 is given by (3.16) and, in the main part of the boundary layer (see (4.28)), 
ay/dq = U'+ O ( E ) .  Since the slowly varying function A(x1)/(2x,)~ is O( l ) ,  the dominant 
Reynolds-number dependence of the amplitude of the Tollmien-Schlichting wave is 
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given by the factor E - ~ ~  and since A is only determined to within an arbitrary 
constant, it follows from the first paragraph of 95 that  i t  can be normalized so that 

A(x1)/(2x1)f + x; as x1 + 0. (6.2) 

Then the Tollmien-Schlichting wave (6.1) arising from any given free stream 
disturbance will be multiplied by the same O( 1) constant as the corresponding 
asymptotic eigensolution of the unsteady boundary-layer equation. 

It is worth noting that the results of this paper are entirely independent of the 
nature of the free-stream velocity perturbation u,. More importantly, they also apply 
to any finite-thickness flat plate whose mean pressure gradient is sensibly zero in the 
downstream region where x > 1. The unsteady BIasius boundary-layer equation (3.2) 
still holds in this region, but its asymptotic solution now corresponds to  a different 
‘upstream boundary condition’. This will no doubt have an important effect on the 
constants that multiply the asymptotic eigensolutions, but we have not attempted 
to calculate these here. 

The author would like to thank Professors Eli Reshotko and Franklin K. Moore 
for their helpful comments during the course of this work. He would also like to thank 
Bruce Auer for carrying out the numerical computations. 

Appendix A. Amplitude corrections for asymptotic eigensolutions 

(i.e. a solution with the free-stream forcing term h put equal to zero) 
It was shown by Lam &, Rott (1960) that  (3.2) possesses the homogeneous solution 

where p(x) can be any differential function of x, and F(7)  is the Blasius function 
defined by (3.12)-(3.14). 

Ackerberg & Phillips (1972) point out that  (A 1 )  can be considered as an 
eigensolution for the outer flow since a$,/ar satisfies a homogeneous outer boundary 
condition. However, it does not satisfy the wall boundary conditions (3.5) but, as 
shown by Ackerberg & Phillips, i t  can be asymptotically matched onto an ‘inner 
solution’ that  does satisfy these conditions. 

This latter solution is obtained by introducing the new independent variables u 
(which is defined in (3.12)) and 

into (3.2) with h = 0 to obtain 
a = 6-1 = 2-t (A 2) 

(A 3) 

(A 4) 

4$,,,+ 2~aF$,,+4i$,-2a2F(a$,,-a$,,) + 2/2 u3F”(u$,,-a$,) = 0, 

where we have put $b, 01) = $C(?> x).  

The variable a is presumed to  be of order one in the wall layer. Then i t  follows 
from (3.2) that 9 will be small, and we can approximate the Blasius fuhction by the 
first two terms in its Taylor-series expansion: 
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Inserting this into (A 3 )  and dropping terms that are higher order than a3 and 
a7a$/aa, we obtain 

4$,,,+4i$,+ 42a4U;(a$ , ,  -Ju) 

Inserting the expansion (3 .15)  into this result, we find upon equating coefficients of 
like powers of a that Lpgo = 0, 

(A 7 )  
A 
12 

Lpgl = ( ~ ; / 2 9  [ 4 7 ( ~ 9 ; - g 0 ) + a 2 g , ” - 2 ~ g ; +  - ( a g ; - - g o )  ~ 3 1 ,  

where we have put d3 d 
P - d a 3  da 

L =---+&--+A 

and the primes now denote differentiation with respect to a. 
Equation (3 .5 )  implies that  go and g, must satisfy the wall boundary conditions 

go = g; = 0 at u = 0, (A 9 )  

g1 = g; = 0 a t  cr = 0. (A 10) 

Equation (A6)  is the same as Ackerberg & Phillips’ equation (4 .4 )  for the 
a-dependent part of the inner solution. They showed that the solution to this equation 
that satisfies the wall boundary conditions (A 9) and does not grow exponentially fast 
as a + 0 (which is requied in order that  i t  be able to match a solution of the form 
(A 1))  is given by (3 .7b ) .  This proves our contention that xT times the Ackerberg & 
Phillips solution satisfies the governing equations to within an error O(a3) times that 
solution - at least in the inner region. We will complete the proof of this assertion 
when we show that matching with (A 1 )  requires p to be equal to xT times the p given 
by Ackerberg & Phillips plus terms that are smaller by a factor of a3. 

Ackerberg & Phillips show that 

go - U; -+ a +exponentially small terms as a - co. (A 1 1 )  (f 1 
The right-hand side of (A 7 )  therefore behaves like 

~ a 3 r  3~ 
4i7 

- ( U A ) ~  [T + 2 a  + + 2-t +exponentially small terms as a + co. 

It follows that 

where K is a constant. 

7 the outer solution behaves like 
On the other hand, inserting (A 2 ) ,  (A 5) and (3.12) into (A l ) ,  we find that for small 

Hence, inserting (A 1 1 )  and (A 12) into (3 .15 ) ,  we see that the inner and outer solutions 
will match if we put 

(A 13) P = p0+a3p, ,  

where a 1 - 2 T  

Po = 
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Pl= 

Inserting this into (A 1) we see that the lowest-order solution is indeed equal to xT 
times Ackerberg & Phillips' outer solution given by (3.7~). 

In order to determine r we multiply both sides of (A 7 )  by d w l d a  and integrate 
the result from zero to infinity. But, since w ( a )  satisfies Airy's equation 

d2w 
d a 2  
-+(ha+i)w = 0, 

we find upon integrating by parts and using (3.11), (3.13) and (A 10) that 

O0 d2w d2gl d2g 
JOw 

Lpglda  = -jo -- d u -  JOw (ha + i) w L d u -  [igi(O) - hgl(0)] Ai (Q) du2 du2 du2 
= 0. 

It now follows from (A 7) that 7 is given by (3.16). 

Appendix B. Calculation of wall-layer solution 
Since d2Yo/dC satisfies (4.41) it follows from (4.37) and (4.48) that 

where u3 is an arbitrary function of x1 and the subscript 1 on 00 is used to indicate 
that the path of integration tends to infinity in the sector -4. < arg 5 < &r, Inserting 
(4.39) to eliminate q, using the fact that U = Uiq + O(r4), and matching with (4.28) 
yields 

F jc: (6- 0 Ai (4 d c  
70 = (B 1) 
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